Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Molecules ; 29(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542894

RESUMO

The lactic acid bacteria Streptococcus thermophilus and Lactobacillus helveticus are commonly used as starter cultures in dairy product production. This study aimed to investigate the characteristics of fermented milk using different ratios of these strains and analyze the changes in volatile compounds during fermentation and storage. A 10:1 ratio of Streptococcus thermophilus CICC 6063 to Lactobacillus helveticus CICC 6064 showed optimal fermentation time (4.2 h), viable cell count (9.64 log10 colony-forming units/mL), and sensory evaluation score (79.1 points). In total, 56 volatile compounds were identified and quantified by solid-phase microextraction and gas chromatography-mass spectrometry (SPME-GC-MS), including aldehydes, ketones, acids, alcohols, esters, and others. Among these, according to VIP analysis, 2,3-butanedione, acetoin, 2,3-pentanedione, hexanoic acid, acetic acid, acetaldehyde, and butanoic acid were identified as discriminatory volatile metabolites for distinguishing between different time points. Throughout the fermentation and storage process, the levels of 2,3-pentanedione and acetoin exhibited synergistic dynamics. These findings enhance our understanding of the chemical and molecular characteristics of milk fermented with Streptococcus thermophilus and Lactobacillus helveticus, providing a basis for improving the flavor and odor of dairy products during fermentation and storage.


Assuntos
Lactobacillus delbrueckii , Lactobacillus helveticus , Pentanonas , Animais , Leite/química , Streptococcus thermophilus/metabolismo , Fermentação , Acetoína/análise , Lactobacillus delbrueckii/metabolismo , Cetonas/análise
2.
Cell Biochem Funct ; 42(2): e3981, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509733

RESUMO

Systemic lupus erythematosus (SLE) is known as an autoimmune disorder that is characterized by the breakdown of self-tolerance, resulting in disease onset and progression. Macrophages have been implicated as a factor in the development of SLE through faulty phagocytosis of dead cells or an imbalanced M1/M2 ratio. The study aimed to investigate the immunomodulatory effects of Lactobacillus delbrueckii and Lactobacillus rhamnosus on M1 and M2 macrophages in new case lupus patients. For this purpose, blood monocytes were collected from lupus patients and healthy people and were cultured for 5 days to produce macrophages. For 48 h, the macrophages were then cocultured with either probiotics or lipopolysaccharides (LPS). Flow cytometry and real-time polymerase chain reaction were then used to analyze the expression of cluster of differentiation (CD) 14, CD80, and human leukocyte antigen - DR (HLADR) markers, as well as cytokine expression (interleukin [IL]1-ß, IL-12, tumor necrosis factor α [TNF-α], IL-10, and transforming growth factor beta [TGF-ß]). The results indicated three distinct macrophage populations, M0, M1, and M2. In both control and patient-derived macrophage-derived monocytes (MDMs), the probiotic groups showed a decrease in CD14, CD80, and HLADR expression compared to the LPS group. This decrease was particularly evident in M0 and M2 macrophages from lupus patients and M1 macrophages from healthy subjects. In addition, the probiotic groups showed increased levels of IL-10 and TGF-ß and decreased levels of IL-12, IL1-ß, and TNF-α in MDMs from both healthy and lupus subjects compared to the LPS groups. Although there was a higher expression of pro-inflammatory cytokines in lupus patients, there was a higher expression of anti-inflammatory cytokines in healthy subjects. In general, L. delbrueckii and L. rhamnosus could induce anti-inflammatory effects on MDMs from both healthy and lupus subjects.


Assuntos
Lacticaseibacillus rhamnosus , Lactobacillus delbrueckii , Lúpus Eritematoso Sistêmico , Probióticos , Humanos , Monócitos/metabolismo , Monócitos/patologia , Interleucina-10 , Lactobacillus delbrueckii/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Interleucina-12/metabolismo , Interleucina-12/farmacologia , Interleucina-12/uso terapêutico , Fator de Crescimento Transformador beta/metabolismo , Probióticos/farmacologia
3.
Lett Appl Microbiol ; 77(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38521981

RESUMO

It is a problem that influenza virus infection increases susceptibility to secondary bacterial infection in lungs leading to lethal pneumonia. We previously reported that exopolysaccharides (EPS) derived from Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 (OLL1073R-1) could prevent against influenza virus infection followed by secondary bacterial infection in vitro. Therefore, the present study assessed whether EPS derived OLL1073R-1 protects the alveolar epithelial barrier disfunction caused by influenza virus infection. After A549 cells treated with EPS or without EPS were infected influenza virus A/Puerto Rico/8/34 (IFV) for 12 h, the levels of tight junction genes expression and inflammatory genes expression were measured by reverse transcription polymerase chain reaction. As results, EPS treatment could protect against low-titer IFV infection, but not high-titer IFV infection, followed by suppression of the increased expression of inflammatory cytokine gene levels and recovery of the decrease in the expression level of ZO-1 gene that was caused by low-titer IFV infection, leading to an improvement trend in the barrier function. Our findings showed that EPS derived from OLL1073R-1 could inhibit low-titer IFV infection leading to maintenance of the epithelial barrier function through the suppression of inflammatory cytokine genes expression.


Assuntos
Infecções Bacterianas , Influenza Humana , Lactobacillus delbrueckii , Orthomyxoviridae , Humanos , Lactobacillus delbrueckii/genética , Lactobacillus delbrueckii/metabolismo , Junções Íntimas , Citocinas/genética , Citocinas/metabolismo
4.
Food Funct ; 15(5): 2655-2667, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38362628

RESUMO

Peptides in milk fermented with Lactobacillus delbrueckii QS306 before and after ultrahigh pressure treatment were identified using proteomics. Subsequently, 16 stable tripeptides were screened out based on activity score prediction, PeptideCutter analysis, and hydrophobicity calculations. Among them, WRP, WSR, and YRP showed the best angiotensin-converting enzyme (ACE) inhibitory activity, and their semi-inhibitory concentrations were 46.707, 300.121, and 89.555 µM, respectively. WRP and WSR were competitive inhibitors, whereas YRP was non-competitive. Gastrointestinal simulation revealed that WRP and YRP had better gastrointestinal stability. The values of RMSD, ΔGbind, ΔGpol, and RSMF obtained from molecular dynamics simulation indicated that the interaction of WRP and ACE was stable. Thus, Lactobacillus delbrueckii QS306-fermented milk can serve as an important source of ACE inhibitory peptides both before and after ultrahigh pressure treatment. The strategy of in silico screening, activity evaluation, and molecular dynamics simulation adopted in this study can be applied to the large-scale screening of novel peptides with high ACE inhibitory activity.


Assuntos
Lactobacillus delbrueckii , Lactobacillus , Leite , Animais , Leite/química , Lactobacillus delbrueckii/metabolismo , Inibidores da Enzima Conversora de Angiotensina/química , Simulação de Dinâmica Molecular , Peptídeos/química , Peptidil Dipeptidase A/metabolismo , Simulação de Acoplamento Molecular
5.
Tissue Barriers ; 12(1): 2184157, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36852963

RESUMO

Lactic acid bacteria (LAB) are commonly used probiotics that improve human health in various aspects. We previously reported that yogurt starter strains, Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131, potentially enhance the intestinal epithelial barrier function by inducing the expression of antimicrobial peptides in the small intestine. However, their effects on physical barrier functions remain unknown. In this study, we found that both strains ameliorated the decreased trans-epithelial resistance and the increased permeability of fluorescein isothiocyanate-dextran induced by tumor necrosis factor (TNF)-α and interferon (IFN)-γ in Caco-2 cells. We also demonstrated that LAB prevented a decrease in the expression and disassembly of tight junctions (TJs) induced by TNF-α and IFN-γ. To assess the repair activity of TJs, a calcium switch assay was performed. Both strains were found to promote the reassembly of TJs, and their activity was canceled by the inhibitor of AMP-activated protein kinase (AMPK). Moreover, these strains showed increased AMPK phosphorylation. These observations suggest that the strains ameliorated physical barrier dysfunction via the activation of AMPK. The activities preventing barrier destruction induced by TNF-α and IFN-γ were strain-dependent. Several strains containing L. bulgaricus 2038 and S. thermophilus 1131 significantly suppressed the barrier impairment, and L. bulgaricus 2038 showed the strongest activity among them. Our findings suggest that the intake of L. bulgaricus 2038 and S. thermophilus 1131 is a potential strategy for the prevention and repair of leaky gut.


Assuntos
Proteínas Quinases Ativadas por AMP , Lactobacillus delbrueckii , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Células CACO-2 , Iogurte/microbiologia , Fator de Necrose Tumoral alfa/metabolismo , Lactobacillus delbrueckii/metabolismo
6.
J Biotechnol ; 374: 90-100, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37572793

RESUMO

The fermentation process of milk to yoghurt using Lactobacillus delbrueckii subsp. bulgaricus in co-culture with Streptococcus thermophilus is hallmarked by the breakdown of lactose to organic acids such as lactate. This leads to a substantial decrease in pH - both in the medium, as well as cytosolic. The latter impairs metabolic activities due to the pH-dependence of enzymes, which compromises microbial growth. To quantitatively elucidate the impact of the acidification on metabolism of L. bulgaricus in an integrated way, we have developed a proton-dependent computational model of lactose metabolism and casein degradation based on experimental data. The model accounts for the influence of pH on enzyme activities as well as cellular growth and proliferation of the bacterial population. We used a machine learning approach to quantify the cell volume throughout fermentation. Simulation results show a decrease in metabolic flux with acidification of the cytosol. Additionally, the validated model predicts a similar metabolic behaviour within a wide range of non-limiting substrate concentrations. This computational model provides a deeper understanding of the intricate relationships between metabolic activity and acidification and paves the way for further optimization of yoghurt production under industrial settings.


Assuntos
Lactobacillus delbrueckii , Lactobacillus delbrueckii/metabolismo , Lactose , Metabolismo dos Carboidratos , Fermentação , Concentração de Íons de Hidrogênio
7.
Molecules ; 28(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446903

RESUMO

Yak yogurt, which is rich in microorganisms, is a naturally fermented dairy product prepared with ancient and modern techniques by Chinese herdsmen in the Qinghai-Tibet Plateau. The objective of this research was to assess the impact of Lactobacillus bulgaricus and Streptococcus thermophilus starter cultures on the quality and shelf life of yak yogurt, as well as the genetic stability across multiple generations, in comparison to commercially available plain yogurt and peach oat flavor yogurt. Following that, the samples were evenly divided into four treatment groups denoted as T1 (treatment 1), T2, T3, and T4, with each group employing a distinct source of yogurt formulation. T1 included L. bulgaricus, T2 comprised S. thermophilus, T3 consisted of plain yogurt, and T4 represented peach oat yogurt flavor. The findings indicate that T1 yogurt consistently presents a lower pH and higher acidity compared to the other three yogurt types throughout the entire generation process. Moreover, the fat content in all generations of the four yogurt types exceeds the national standard of 3.1 g/100 g, while the total solid content shows a tendency to stabilize across generations. The protein content varies significantly among each generation, with T1 and T4 yogurt indicating higher levels compared to the T2 and T3 yogurt groups. In terms of overall quality, T1 and T4 yogurt are superior to T2 and T3 yogurt, with T1 yogurt being the highest in quality among all groups. The findings revealed that the inclusion of L. bulgaricus led to enhanced flavor, texture, and genetic stability in yak yogurt. This study will serve as a valuable source of data, support, and methodology for the development and screening of compound starters to be utilized in milk fermentation in future research and applications.


Assuntos
Lactobacillus delbrueckii , Iogurte , Animais , Bovinos , Iogurte/análise , Leite/química , Tibet , Lactobacillus delbrueckii/metabolismo , Streptococcus thermophilus/metabolismo , Fermentação
8.
J Sci Food Agric ; 103(15): 7494-7505, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37411001

RESUMO

BACKGROUND: Enterotoxigenic Escherichia coli (ETEC) is a pathogen that causes traveler's diarrhea, for which an effective vaccine is lacking. Previous studies showed that Limosilactobacillus reuteri could inhibit E. coli, effectively increase the expression of its tight junction protein, and reduce the adhesion of ETEC to the intestinal epithelial Caco-2 cell line. In this study, three kinds of yogurt with different starter cultures were first prepared: Lm. reuteri yogurt (fermented by Lm. reuteri alone), traditional yogurt (fermented by Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus at a ratio of 1:1) and mixed yogurt (fermented by Lm. reuteri, S. thermophilus and L. delbrueckii subsp. bulgaricus at a ratio of 1:1:1). The physiological properties, oxidative stress, intestinal barrier function, tight junction protein, pathological conditions and intestinal microbiota composition were investigated. RESULTS: The data showed that Lm. reuteri-fermented yogurt pregavage could effectively alleviate the intestinal barrier impairment caused by ETEC in mice. It alleviated intestinal villus shortening and inflammatory cell infiltration, decreased plasma diamine oxidase concentration and increased claudin-1 and occludin expression in the jejunum of ETEC-infected mice. In addition, Lm. reuteri-fermented yogurt significantly reduced the ETEC load in fecal samples, reversed the increase in Pseudomonadota abundance and decreased Bacteroidota abundance caused by ETEC infection. Furthermore, the composition of the intestinal microbiota could maintain a stable state similar to that in healthy mice. CONCLUSION: These findings indicate that Lm. reuteri-fermented yogurt could alleviate intestinal barrier damage, inhibit ETEC growth and maintain the stability of the intestinal microbiota during ETEC infection. © 2023 Society of Chemical Industry.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Lactobacillus delbrueckii , Limosilactobacillus reuteri , Humanos , Animais , Camundongos , Diarreia/prevenção & controle , Iogurte , Células CACO-2 , Viagem , Lactobacillus delbrueckii/metabolismo , Infecções por Escherichia coli/prevenção & controle , Proteínas de Junções Íntimas/metabolismo
9.
Int J Biol Macromol ; 245: 125375, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37321439

RESUMO

We present the structure, biological activity, peptide composition, and emulsifying properties of pea protein isolate (PPI) after hydrolysis by cell envelope proteinase (CEP) from Lactobacillus delbrueckii subsp. bulgaricus. Hydrolysis resulted in the unfolding of the PPI structure, characterized by an increase in fluorescence and UV absorption, which was related to thermal stability as demonstrated by a significant increase in ΔH and the thermal denaturation temperature (from 77.25 ± 0.05 to 84.45 ± 0.04 °C). The hydrophobic amino acid of PPI significantly increased from 218.26 ± 0.04 to 620.77 ± 0.04 followed by 557.18 ± 0.05 mg/100 g, which was related to their emulsifying properties, with the maximum emulsifying activity index (88.62 ± 0.83 m2/g, after 6 h hydrolysis) and emulsifying stability index (130.77 ± 1.12 min, after 2 h hydrolysis). Further, the results of LC-MS/MS analysis demonstrated that the CEP tended to hydrolyze peptides with an N-terminus dominated by Ser and a C-terminus dominated by Leu, which enhanced the biological activity of pea protein hydrolysates, as supported by their relatively high antioxidant (ABTS+ and DPPH radical scavenging rates were 82.31 ± 0.32% and 88.95 ± 0.31%) and ACE inhibitory (83.56 ± 1.70%) activities after 6 h of hydrolysis. 15 peptide sequences (score > 0.5) possessed both antioxidant and ACE inhibitory activity potential according to the BIOPEP database. This study provides theoretical guidance for the development of CEP-hydrolyzed peptides with antioxidant and ACE inhibitory activity that can be used as emulsifiers in functional foods.


Assuntos
Lactobacillus delbrueckii , Peptídeo Hidrolases , Peptídeo Hidrolases/metabolismo , Lactobacillus delbrueckii/metabolismo , Hidrolisados de Proteína/química , Antioxidantes/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Peptídeos/química , Endopeptidases
10.
Int J Biol Macromol ; 242(Pt 1): 124454, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37076070

RESUMO

Derivatives [i.e. proteins and exopolysaccharides (EPS)] from Lactobacillus delbrueckii subsp. bulgaricus (LB) were extracted, characterized, and for the first time used in the production of novel self-crosslinking 3D printed alginate/hyaluronic acid (ALG/HA) hydrogels, as high-value functional biomaterials with therapeutic potentials in regenerative medicine applications. Derivatives coming from two different LB strains, LB1865 and LB1932, were tested in-vitro and compared for their cytotoxicity and effect on proliferation and migration on human fibroblast. EPS received particular attention as showing relevant dose-dependent cytocompatibility against the human fibroblast. The derivatives showed an ability to increase cell proliferation and migration, quantifiable between 10 and 20 % if compared to controls, with higher values for the derivatives obtained from the LB1932 strain. These were explained by liquid chromatography-mass spectrometry targeted protein biomarker analysis as a decrease in matrix-degrading and proapoptotic proteins, associated with an increase in collagen and antiapoptotic proteins production. LB1932 enriched hydrogel was found to be of benefit compared to control dressings, giving the more promising results as potential for in vivo skin wound healing tests.


Assuntos
Lactobacillus delbrueckii , Humanos , Lactobacillus delbrueckii/metabolismo , Ácido Hialurônico/metabolismo , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Cicatrização , Impressão Tridimensional
11.
Food Res Int ; 164: 112406, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737987

RESUMO

In this study, we assessed the effect of ultrahigh pressure (UHP) treatment on the concentration of peptides and angiotensin-converting enzyme (ACE) inhibitory activity in milk fermented with Lactobacillus delbrueckii QS306. The peptides were identified using peptidomic analysis, and 313 unique peptides were identified. These peptides were derived from 53 precursor proteins. Before and after UHP treatment, 361 (22.2%) peptide sequences exhibited difference, and 53 peptide segments were significantly different. Among them, small peptides (amino acid residues ≤6) isoelectric were point at pH 5-6, and the net charge was mainly positive or neutral. With hydrophobicity and ACE inhibitory activity as screening indicators, 214 small peptides with potential ACE inhibitory activity were identified, and 130 new peptides had potential ACE inhibitory activity. A novel ACE inhibitory peptide VAPFP was synthesized, whose in vitro inhibition rate was 10.56 µmol\/L. Therefore, using peptidomics, the changes in peptide sequences and enhancement in ACE inhibitory activity before and after UHP treatment could be effectively identified in milk fermented with Lactobacillus delbrueckii QS306. This study provided a convenient method for the discovery and identification of new ACE inhibitory peptides.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Bebidas Fermentadas , Lactobacillus delbrueckii , Leite , Animais , Inibidores da Enzima Conversora de Angiotensina/química , Angiotensinas , Fermentação , Lactobacillus delbrueckii/metabolismo , Leite/química , Peptídeos/análise
12.
Oral Health Prev Dent ; 21(1): 69-76, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36825640

RESUMO

PURPOSE: To evaluate the effect of bovine milk and yogurt on selected oral microorganisms and different oral biofilms. MATERIALS AND METHODS: Milk was prepared from 0.5% fat (low-fat) and 16% fat (high fat) milk powder. For yogurt preparation, the strains Lactobacillus delbrueckii ssp. bulgarcius and Streptococcus thermophilus were added to the milk. Minimal inhibitory concentrations (MIC) and minimal microbiocidal concentrations (MMC) of the test compounds were measured against various microorganisms by the microbroth dilution technique. Cariogenic periodontal biofilms and one containing Candida were created on plastic surfaces coated with test substances. Further, preformed biofilms were exposed to the test substances at a concentration of 100% for 10 min and thereafter 10% for 50 min. Both colony forming units (cfu) and metabolic activity were quantified in the biofilms. RESULTS: Neither high-fat milk, low-fat milk nor casein inhibited the growth of any species. Yogurt and L. delbrueckii ssp. bulgaricus at low MIC and MMC suppressed the growth of Porphyromonas gingivalis and other bacteria associated with periodontal disease. High-fat yogurt decreased cfu in the forming periodontal biofilm by 90%. Both low- and high-fat yogurts reduced metabolic activity in newly forming and preformed periodontal and Candida biofilms, but not in the cariogenic biofilm. CONCLUSIONS: Yogurt and L. delbru eckii ssp. bulgaricus, but not milk, were bactericidal against periodontopathogenic bacteria. Yoghurt reduced the metabolic activity of a Candida biofilm and a periodontal biofilm. Yogurt and L. delbrueckii ssp. bulgaricus may have potential in prevention and therapy of periodontal diseases and Candida infections.


Assuntos
Lactobacillus delbrueckii , Iogurte , Humanos , Animais , Iogurte/microbiologia , Leite/microbiologia , Lactobacillus delbrueckii/metabolismo , Streptococcus thermophilus/metabolismo , Biofilmes
13.
Food Chem ; 410: 135392, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36623464

RESUMO

In this work, we investigated the structural and biological properties of soybean protein isolate (SPI) after 0-8 h hydrolyzation with cell envelope proteinase (CEP) extracted from Lactobacillus delbrueckii subsp. bulgaricus. CEP hydrolysis increased the ß-sheet and red-shifted the fluorescence peak, while decreasing the α-helix, indicating the unfolding of soybean proteins. Increased surface hydrophobicity and fluorescence of the soybean protein hydrolysates were correlated with the increased hydrophobic amino acid (from 209.67 to 217.6 mg/100 g). CEP tended to hydrolyze the N- and C-terminal regions of sequences dominated by Gly and Leu, which enhanced the antioxidant activity of the SPHs (lowest IC50s value of ABTS•+ and hydroxyl radical scavenging activity were 0.324 ± 0.006 mg/mL and 0.365 ± 0.001 mg/mL after 4 h hydrolysis). Comparison with the database of bioactive peptides suggested various potential biological activities, including antioxidant activity, angiotensin-converting enzyme inhibitory activity and dipeptidyl peptidase-IV inhibitory activity. The study findings have theoretical significance for the development of CEP hydrolysis and novel bioactive soybean peptides.


Assuntos
Lactobacillus delbrueckii , Peptídeo Hidrolases , Peptídeo Hidrolases/metabolismo , Lactobacillus delbrueckii/metabolismo , Antioxidantes/farmacologia , Hidrolisados de Proteína , Endopeptidases , Peptídeos/química
14.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36639125

RESUMO

AIM: This study investigates the individual and combined effects of fermentation parameters for improving cell biomass productivity and the resistance to freezing, freeze-drying, and freeze-dried storage of Lactobacillus delbrueckii subsp. bulgaricus CFL1. METHODS AND RESULTS: Cells were cultivated at different temperatures (42°C and 37°C) and pH values (5.8 and 4.8) and harvested at various growth phases (mid-exponential, deceleration, and stationary growth phases). Specific acidifying activity was determined after fermentation, freezing, freeze-drying, and freeze-dried storage. Multiple regression analyses were performed to identify the effects of fermentation parameters on the specific acidifying activity losses and to generate the corresponding 3D response surfaces. A multiobjective decision approach was applied to optimize biomass productivity and specific acidifying activity. The temperature positively influenced biomass productivity, whereas low pH during growth reduced the loss of specific acidifying activity after freezing and freeze-drying. Furthermore, freeze-drying resistance was favored by increased harvest time. CONCLUSIONS: Productivity, and freezing and freeze-drying resistances of L. delbrueckii subsp. bulgaricus CFL1 were differentially affected by the fermentation parameters studied. There was no single fermentation condition that improved both productivity and resistance to freezing and freeze-drying. Thus, Pareto fronts were helpful to optimize productivity and resistance, when cells were grown at 42°C, pH 4.8, and harvested at the deceleration phase.


Assuntos
Lactobacillus delbrueckii , Congelamento , Lactobacillus delbrueckii/metabolismo , Fermentação , Liofilização/métodos , Temperatura
15.
Food Funct ; 14(2): 746-758, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36537006

RESUMO

Live, inactivated Lactobacillus or their metabolites have various beneficial functions, which may alleviate food allergy. This study aimed to investigate the intervention effects of three forms of Lactobacillus delbrueckii subsp. bulgaricus (Ld) on cell degranulation, intestinal barrier function, and intestinal mucosal immunity against soybean allergy. First, the intervention effect of Ld on cell degranulation was investigated using the KU812 cell degranulation model. Then, the Caco-2 cell inflammation model was used to evaluate their anti-inflammatory capacity, and the cell monolayer model was constructed to test the protective effects of different forms of Ld on the intestinal barrier. Finally, mesenteric lymph node (MLN) cells from mice were used to assess the ability of different forms of Ld to regulate the balance of cytokines associated with food allergy in the immune tissue of the intestinal mucosa. Results showed that live bacteria and heat-inactivated bacteria could inhibit the degranulation of KU812 cells, mainly by significantly inhibiting the release of histamine, IL-6 and TNF-α. Both live bacteria and heat-inactivated bacteria could also suppress the increase of IL-6 and IL-8 in Caco-2 cells induced by lipopolysaccharide (LPS). The culture supernatant of bacteria and live bacteria showed better ability to maintain the integrity and permeability of the intestinal epithelial barrier. In addition, heat-inactivated bacteria could return the values of IFN-γ and IL-10 to normal levels and restore the balance of IFN-γ/IL-4, thereby reversing the immune deviation of MLN cells. Therefore, three forms of Ld have potential for the treatment of soybean allergy.


Assuntos
Antialérgicos , Hipersensibilidade , Lactobacillus delbrueckii , Humanos , Animais , Camundongos , Lactobacillus delbrueckii/metabolismo , Antialérgicos/metabolismo , Células CACO-2 , Interleucina-6/metabolismo , Bactérias
16.
J Dairy Sci ; 106(2): 897-911, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36526462

RESUMO

Yogurt and its related products are popular worldwide. During transportation and storage, Lactobacillus delbrueckii ssp. bulgaricus in yogurt continues to metabolize to form lactic acid, the postacidification phenomenon of yogurt. Postacidification of yogurt is a widespread phenomenon in the dairy industry. Many scholars have done research on controlling the postacidification process, but few report on the molecular mechanisms involved. In this study, we used a molecular-assisted approach to screen food additives that can inhibit postacidification and analyzed its effects on yogurt quality as well as its regulatory mechanism from multi-omics perspectives in combination. The copper ion was found to upregulate the expression of the LDB_RS05285 gene, and the copper transporter-related genes were regulated by copper. Based on the metabolic-level analysis, copper was found to promote lactose hydrolysis, accumulate a large amount of glucose and galactose, inhibit the conversion of glucose to lactic acid, and reduce the production of lactic acid. The significantly greater abundance of l-isoleucine and l-phenylalanine increased the abundance of 3-methylbutyraldehyde (∼1.2 times) and benzaldehyde (∼7.9 times) to different degrees, which contributed to the formation of the overall flavor of yogurt. Copper not only stabilizes the acidity of yogurt, but also it improves the flavor of yogurt. Through this established method involving quantitative and correlation analyses at the transcriptional and metabolic levels, this study provides guidance for the research and development of food additives that inhibit postacidification of yogurt and provide a reference for studying the changes of metabolites during storage of yogurt.


Assuntos
Cobre , Lactobacillus delbrueckii , Animais , Fermentação , Cobre/metabolismo , Iogurte/análise , Lactobacillus delbrueckii/metabolismo , Glucose/metabolismo , Óperon , Ácido Láctico/metabolismo , Streptococcus thermophilus/metabolismo
17.
J Dairy Sci ; 106(2): 884-896, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36460506

RESUMO

Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus are the main species used for yogurt preparation. Glutathione (GSH) can be synthesized by S. thermophilus and plays a crucial role in combating environmental stress. However, the effect of GSH biosynthesis by S. thermophilus on cocultured L. delbrueckii ssp. bulgaricus is still unknown. In this study, a mutant S. thermophilus ΔgshF was constructed by deleting the GSH synthase. The wild strain S. thermophilus ST-1 and ΔgshF mutants were cocultured with L. delbrueckii ssp. bulgaricus ATCC11842 by using Transwell chambers (Guangzhou Shuopu Biotechnology Co., Ltd.), respectively. It was proven that the GSH synthesized by S. thermophilus ST-1 could be absorbed and used by L. delbrueckii ssp. bulgaricus ATCC11842, and promote growth ability and stress tolerance of L. delbrueckii ssp. bulgaricus ATCC11842. The biomass of L. delbrueckii ssp. bulgaricus ATCC11842 cocultured with S. thermophilus ST-1 or ΔgshF (adding exogenous GSH) increased by 1.8 and 1.4 times compared with the biomass of L. delbrueckii ssp. bulgaricus ATCC11842 cocultured with S. thermophilus ΔgshF. Meanwhile, after H2O2 and low-temperature treatments, the bacterial viability of L. delbrueckii ssp. bulgaricus cocultured with S. thermophilus ΔgshF, with or without GSH, was decreased by 41 and 15% compared with that of L. delbrueckii ssp. bulgaricus cocultured with S. thermophilus ST-1. Furthermore, transcriptome analysis showed that the expression levels of genes involved in purine nucleotide and pyrimidine nucleotide metabolism in L. delbrueckii ssp. bulgaricus ATCC11842 were at least 3 times increased when cocultured with S. thermophilus (fold change > 3.0). Moreover, compared with the mutant strain ΔgshF, the wild-type strain ST-1 could shorten the fermented curd time by 5.3 hours during yogurt preparation. These results indicated that the GSH synthesized by S. thermophilus during cocultivation effectively enhanced the activity of L. delbrueckii ssp. bulgaricus and significantly improved the quality of fermented milk.


Assuntos
Lactobacillus delbrueckii , Animais , Lactobacillus delbrueckii/metabolismo , Streptococcus thermophilus/metabolismo , Técnicas de Cocultura/veterinária , Peróxido de Hidrogênio/metabolismo , Iogurte/análise , Glutationa/metabolismo , Fermentação
18.
Bioresour Technol ; 367: 128260, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36343775

RESUMO

The positive interaction between Clostridium sp. and lactic acid-producing bacteria (Lactobacillus sp) is commonly seen in various high-rate hydrogen production systems. However, the exact role of the hydrogen production ability of Lactobacillus sp in a dark fermentation production system is rarely studied. Lactobacillus delbrueckii was herein used for the first time, to the best of the author's knowledge, to demonstrate biohydrogen production under anaerobic conditions. At first, the pH condition was optimized, followed by the addition of nanoparticles for enhanced biohydrogen production. Under optimized conditions of pH 6.5, substrate concentration 10 g/L, and 100 mg/L of NiO/Fe2O3, the maximum hydrogen yield (HY) of 1.94 mol/mol hexose was obtained, which is 18 % more than the control. The enhanced H2 production upon the addition of nanoparticles is supported via the external electron transfer (EET) mechanism, which regulates the metabolic pathway regulation with increased production of acetate and butyrate and reduced formation of lactate.


Assuntos
Lactobacillus delbrueckii , Nanopartículas , Lactobacillus delbrueckii/metabolismo , Óxidos , Fermentação , Hidrogênio/metabolismo , Lactobacillus/metabolismo , Reatores Biológicos/microbiologia
19.
Neuropharmacology ; 225: 109401, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36565853

RESUMO

Certain bacteria possess the ability to reduce anxiety- and stress-related behaviors through the gut microbiome-brain axis. Such bacteria are called psychobiotics, and can be used to improve mood and cognition. However, only a few bacteria have been characterized as psychobiotics, and their exact mechanism of action remains unclear. Hence, in this study we analyzed three different species under the Lactobacillacea family, namely, Lactobacillus delbrueckii, Lacticaseibacillus casei, and Lacticaseibacillus paracasei for their potential psychobiotic activities. L. delbrueckii treatment reduced anxiety-like behavior and increased brain and gut glutamic acid decarboxylase (gad) gene expression in zebrafish. It also altered zebrafish gut microbial community as determined by PCR-DGGE and 16S rRNA-based metagenomics analysis. Overall, this paper showed that L. delbrueckii but not L. paracasei and L. casei, induced a consistent improvement in anxiety-like behavior in zebrafish, implicating its potential role as a psychobiotic to reduce anxiety. This article is part of the Special Issue on 'Microbiome & the Brain: Mechanisms & Maladies'.


Assuntos
Microbioma Gastrointestinal , Lactobacillus delbrueckii , Animais , Lactobacillus delbrueckii/genética , Lactobacillus delbrueckii/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/microbiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Encéfalo/metabolismo , Ansiedade
20.
J Dairy Sci ; 105(9): 7322-7333, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35940918

RESUMO

Yogurt, a traditional fermented dairy product, is made with a starter that contains Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus. The aim of this study was to investigate the effects of different concentrations of epigallocatechin gallate (EGCG; 0, 0.5, 1.0, 3.0, and 5.0 mg/mL) on the growth, metabolism, and acid production of lactic acid bacteria, as well as the texture, stability, and antioxidant activity of fermented milk (yogurt). The results showed that a low concentration of EGCG had no significant effect on the acid production capacity of the starter or on the water-holding capacity of the yogurt but did increase its viscosity. A high concentration (5.0 mg/mL) of EGCG delayed the acid production rate of the starter and decreased the water-holding capacity, but significantly increased the antioxidant activity of yogurt. The addition of EGCG significantly increased the hardness of yogurt. Therefore, EGCG can improve the texture of fermented milk and enhance its antioxidant activity and stability, thus improving the overall quality of yogurt.


Assuntos
Lactobacillus delbrueckii , Leite , Ácidos/metabolismo , Animais , Antioxidantes/metabolismo , Catequina/análogos & derivados , Fermentação , Lactobacillus delbrueckii/metabolismo , Leite/química , Streptococcus thermophilus/metabolismo , Água/análise , Iogurte/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA